
GAMECAVE EFFECTS ENGINE 3.X
Particle Effects tutorial

Written by Rhys Andrews

TABLE OF CONTENTS (CLICK TO view chapter)
Introductory ... 2
Getting started with Particle Systems ... 3
Creating an Emitter ... 5
Designing your First Particles ... 8

Alpha Functions .. 8
Blending and Colour Functions ... 9
Particle-Shaping Functions ... 9
Particles Life/Death Functions .. 11
Speed and Motion Functions .. 11
Other Functions... 11

Adding Optional Filters.. 12
Attractor Filters.. 12
Changer Filters.. 13
Deflector Filters ... 14
Destroyer Filters.. 15

Final Revision.. 16

Introductory
Particle Effects are one of the most well known visual/special effect methods used in
GML, and in many cases, other languages as well. Particles are various shapes (and
sizes), with very little information. This information includes where they’re supposed
to go, their appearance, and more. With such little information, particles take little
CPU usage to calculate where and how to draw them on the screen. This is why
particles are a great method to use if you want effects such as rain, explosions,
smoke, fireworks, flames, and more. In the GameCave Effects Engine, many engines
are created on particles alone (or sometimes with some non-particle effects
attached). Unfortunately, Particle Systems/effects can take some time to get the
hang of. They also take a lot of trial and error, and patience to get individual particle
types the way you want them. Well, one alternative would be to use the PartArt
implementation, included with the GCE3.X package. There are many other particle-
designer programs you can download if you wish, however PartArt is the first and
original.

On the other hand, you can get much more control and contentment through creating
the particles via GML. This is where this tutorial comes in: to help you learn how
particles work. Not just the particle-types, but their systems, emitters, destroyers,
deflectors, and more. If you ever get stuck with certain functions and don’t want to
have to read this over again, you can always use the GM Manual (pressing F1 in the
Game Maker’s window). Other than that, enjoy the tutorial!

Getting started with Particle Systems
Let’s go through the basics of how a particle-system structure works. Every particle
system contains groups of ‘filters’ like emitters, destroyers, deflectors, and attractors.
Whether that made sense or not, the fact is, a system will hold a group of filters, and
then according to the filters, displays the various particle types onto the screen in the
correct way. Now you ask (or not), how do I create a particle system?

Particle Systems are created very easily.
system = part_system_create();

A new system has been created into the games memory. Now, whenever you need
to edit, destroy, or insert filters/types into the system, you only need to reference the
system by typing in the variable name, ‘system’. This is simply because the function
part_system_create(); Returns an ID of the new system. So ‘system’ has
captured this ID, and now, we have given a sensible name for the system.

All particle systems have their own settings. These settings can be changed through
some more part_system functions.

system = part_system_create();
part_system_automatic_draw(system,true); //Sets whether the particles
will automatically be drawn onto the screen without first calling a
function. If you do not execute this function, a default value of
FALSE is given.
part_system_automatic_update(system,true); //Sets whether the
position/state of particles will be updated automatically. This is
given a default value of FALSE.
part_system_clear(system); //Resets the particle-system. This resets
all the settings to their default values, and destroys all filters
and types placed inside it.
part_system_depth(system,0); //Gives a DEPTH for the particle-system.
Particles need to be given a depth, right? So this value determines
when to draw particles under/over other things.

part_system_destroy(system); //Completely removes the
particle-system from the memory. This includes all
filters and types.
part_system_draw_order(system,true); //Whether to draw
new particles behind old ones, or vice versa. An
example to the left (darker the particles, the older)
shows this.

part_system_drawit(system); //Redraw the particles.
This is only needed if you've set automatic_draw to
FALSE.
part_system_exists(system); //Returns whether a
particle-system with a given ID exists. You'd put in

"system", obviously, because the value of system is the ID of the
system (remember system=part_system_create()?)
part_system_position(system,x,y); //Rarely used, and
you should really forget about this function. Emitter
Filters are used 99% of the time to produce particles
at the right position, NOT systems.
part_system_update(system); //Rarely used when
automatic_updating has been set to true. However, it
may be useful if you want to give particles a "head
start" before they're first drawn. For instance in
this diagram (to right), all faded-circles are
previous positions of the particle, however the non-

faded-circle has been the only DRAWN position of the particle.

Obviously, when learning a group of functions, you cannot learn them like ‘that’. They
take a bit of practice, referencing the manual over and over until you finally know the
function and its arguments off by heart. Well, that’s acceptable; but it takes patience.
These functions (and all the rest in this tutorial) will take some time to learn; but will
benefit you greatly in the end.

Creating an Emitter
Once you’ve got your system setup how you think you’d like it (remembering the trial
and error factor; you’ll probably go back to the system functions many times before
you get it how you like it), it’s time to create an emitter. Think of emitters like big
machines. They’re built in different shapes and sizes, and placed somewhere on the
room. Then, they shoot out particles. Functions for emitters allow you to choose how
the particles are emitted. The minimum X/Y coordinates, the maximum X/Y
coordinates, and whether the particles are emitted in a linear form or Gaussian form
are just examples of various options you can set.

Now, creating an emitter is very similar to creating a system. You still trap the ID of
the new emitter into a variable; however, the creating function for emitters have an
argument. This argument asks you what system you’d like to place the emitter in.

emitter = part_emitter_create(system);

So you’ve created a new emitter called “emitter”, and you’ve placed it in the system
called “system”. This emitter can only be used inside this system. If the system clears
(part_system_clear) or gets destroyed (part_system_destroy), the emitter goes
with it. You then need to give the emitter some REGION settings. The region settings
tell the emitter where to create particles, and in what shape that area is cut to.

part_emitter_region(system,emitter,0,room_width,0,room_height,ps_shap
e_rectangle,ps_distr_linear);

As you can see, the functions are starting to get a little more interesting. Let’s first
say what this function is doing. It’s saying “allow the emitter ‘emitter’ in the system
‘system’ to create particles anywhere in the room; distributing every part evenly”.
Let’s look at the arguments to see how that works out.

Argument0 – The system that holds the emitter you’d like to apply this function to (in
this case, ‘system’)
Argument1 – The emitter inside that system you’d like to apply the function to (in this
case, ‘emitter’)
Argument2 – The “minimum X” position that particles being burst by this emitter can
be created in. Seeing as the value is 0, no particle can be created from this emitter
any further to the left than the left-edge of the room.
Argument3 – The “maximum X” position that particles being burst by this emitter can
be created in. Seeing as the value is room_width, we find the width of the room
(which is also the right-most pixel in that room), and tell particles that the furthest to
the right they can be created is the right-edge of the room.
Argument4 – The “minimum Y” position. The same as “minimum X” but now we’re
looking at the Y axis; so the particle can’t go any further above the top of the room.
Argument5 – The “maximum Y” position. Same as “maximum X” but now we’re
looking at the Y axis; so the particle can’t go any further below the bottom of the
room.
Argument6 – ps_shape_rectangle is a constant that equals a number. That number
is simply a key to say that the shape of the region is a rectangle. Alternative shape
constants are:
ps_shape_diamond
ps_shape_ellipse
ps_shape_line

To the left is an example of
how shapes implement into
X/Y mins and max’s.

Argument7 – The final
argument determines the
chance of particles being
created in certain areas of
the region. As you probably
have noticed by now,
particles, when being
created inside this emitters
region, will be created in a
random position within
that region. So, here are
the two options (constants)

for the distribution argument:
ps_distr_linear
ps_distr_gaussian

Linear distribution means that everywhere in the region has exactly the same amount
of chance those particles will be created in its spot. As for Gaussian, there’s more
chance that particles are created in the centre of the region than there is at the sides
of the region. Of course, in between the centre and the sides the particles would
have a moderate chance of being created there.

Although there are many more emitter functions, here are the last two functions that
are required to have extra attention put to them. These are the functions that create
certain amounts of certain particles into the emitters region. Here they are!

part_emitter_burst(system,emitter,particle0,5);
part_emitter_stream(system,emitter,particle0,1);

The first and second arguments work just the same as most emitter functions. The
first argument indexes the system where as the second argument indexes the emitter
to create particles in. The third argument is the ID of the particle to create, we’ll get
into that in later chapters (although it’s rather straight forward; just like IDs for
emitters and systems), and the final argument determines how many particles there
should be to create. So, what’s the difference between “burst” and “stream”? Well,
burst allows you to “burst” a certain number of particles once, on that step that the
function is executed. This is most commonly used, as once you stop executing the
function, particles will stop coming out (obviously). Now, stream is the opposite. You
only should use the stream function once, and particles will continually leak out of the
emitters region, every step. The only way you can stop it is by destroying the particle,
assigned emitter, or system. The advantage from using stream over using burst in
the step event (Which as you might’ve guessed, both work slightly the same), is that
you can use negative values for the number of particles to be burst. How does that
work, you ask? Well, it gives a chance of particles being burst. Instead of say
bursting 2 particles every step, you could have -2 to have an average of one particle
burst every 2 steps.

Now that you’ve learnt the most important functions for emitters, here are the
rejected functions that aren’t used as often:

part_emitter_clear(system,emitter); //Restores all the emitter
settings to its default settings.

part_emitter_destroy(system,emitter); //Destroys the emitter from the
system.
part_emitter_destroy_all(system); //Destroys all emitters inside the
particle system.
part_emitter_exists(system,emitter); //Returns whether the emitter
inside the system exists or not.

Next, we’ll go into the most important step; designing your own particles! After you’ve
learnt that, we’ll go into the final 4 filters: destroyers, changers, attractors, and
deflectors. These are used only on occasions; sometimes for particle collisions (as
they were used in the particle-collision engine contained in the GCE3.X package), or
sometimes just for certain effects to be made. They all affect the particles “time in the
house”. They have regions just like emitters; so I guess you can guess the rest in
terms of what each of them do.

Designing your First Particles
So now, it’s time to design your first particles. This is the real thing! For each particle
type, you give all the information about how the particle moves and looks; and then,
those particles are created by the emitter. Any motion changes or physical-changes
(for instance turning a particle into another particle with a changer filter) are done by
the filter. However, the initial information is decided through particle-design functions.
Let’s create our first particle.

particle0 = part_type_create();

Just like creating a system, we’ve created our first particle. As you can see, particles
do not belong to certain systems. During the progress of typing this tutorial I
accidentally stated that filters and particles are part of the system; so I’ve had to
remove that when I came to this part. Why have I told you that? You need to
remember that systems only hold filters. Those filters grab certain particles and
according to its masters settings (the system) as well as its own settings, affect
particles being created and/or changing their path/life while they’re moving around
the screen.

The next set of functions we’re going to look at is the customization functions. These
functions input certain pieces of information about the particle type. That includes
things like direction, speed, colour, shape, angle, and much more. We’ll need to look
at each function in detail, not just give comments about them like previous groups of
functions for filters and systems.

Alpha Functions
part_type_alpha1(particle0,alpha1);
part_type_alpha2(particle0,alpha1,alpha2);
part_type_alpha3(particle0,alpha1,alpha2,alpha3);

These are the functions that deal with the alpha/transparency value of the particle. As
in all particle functions, the first argument asks for the ID of the particle type you wish
to input information into. Again, as you know, the value of the variable “particle0” is
the ID that we need. Now, let’s look at these functions. The first function, alpha1,
sets the particle to a permanent alpha value. This alpha value is carried out all the
way from the particles birth (being created by an emitter), during it’s life (moving
around the screen), and it’s death (changed or destroyed by a filter, or it’s life value
has run out). The second argument asks for this permanent alpha value. For those
who have not dealt with alpha values, 0 alpha makes the particle completely invisible,
1 will make the particle completely visible, and any fractions in between are used
appropriately (I.E 0.5 makes the particle semi-visible).

The second function, alpha2, sets the particle to 2 alpha values. The second
argument asks for the first alpha value. This is the alpha value that the particle will
have when it is born (created). During its life, it will slowly fade to the second alpha
value (argument2/the third argument), and will have died just after the alpha value
has reached the second alpha value.

The final alpha function, alpha3, is pretty obvious as you see from the alpha2
function. Quite basically, alpha3 works just the same as alpha2, however the alpha
first fades from the beginning value to the middle value (argument2), reaching that
middle value in the prime of the particles life (as in, right the middle), and then fades
towards the final value (argument3).

Blending and Colour Functions
The next group of functions deal with the colour(s) of the particle, and the additive
blending of the particle.

part_type_blend(particle0,additive);
part_type_color_hsv(particle0,hmin,hmax,smin,smax,vmin,vmax);
part_type_color_rgb(particle0,rmin,rmax,gmin,gmax,bmin,bmax);
part_type_color_mix(particle0,color1,color2);
part_type_color1(particle0,color1);
part_type_color2(particle0,color1,color2);
part_type_color3(particle0,color1,color2,color3);

These functions get a little more complicated. The first function is rather simple. The
second argument is a true/false value, asking whether to give additive-blending to the
particle or not. Additive blending adds the colours behind the particle to the particles
colour itself. It gets rather hard to explain, however it’s good to play around with,
especially with explosions.

The second function (color_hsv) sets all particles to one fixed colour, however that
colour ranges from particle to particle (as in, each particle will have a different
colour). These colours are ranged from a minimum hue value to a maximum hue
value, a minimum saturation value to a maximum saturation value, and a minimum
luminosity value to a maximum luminosity value (HSV).

The third function (color_rgb) works very similarly to the second, however the
min/max ranges are determined from red/green/blue (rgb) values, instead of
hue/saturation/luminosity (hsv) values.

The fourth function, color_mix, works slightly the same as the other colour functions
we’ve covered, in the fact the particles have a fixed colour for their whole life, and
that it’s randomized. However, the colours aren’t determined via ranges, but simply 2
solid colours to choose from. For instance, instead of using rgb/hsv functions to allow
particles to have any shade from red-to-dark-red, we can allow particles only to have
either red or dark red.

Color1, color2, and color3 works very similar to the alpha1/2/3 functions,
however this deals with colour. Color1 gives every particle one colour throughout its
life. Color2 allows the particle to start off at one colour, and end with another, fading
from one colour to the next during its life. And color3 gives the particle 3 colours,
fading from each one throughout its life.

Particle-Shaping Functions
This can be one of the most creative set of functions to use when creating particles.
They deal with the primary shape/sprite of the particle. That includes size/angle.

part_type_shape(particle0,shape);
part_type_sprite(particle0,sprite,animate,stretch,random);
part_type_orientation(particle0,ang_min,ang_max,ang_incr,ang_wiggle,a
ng_relative);
part_type_size(particle0,size_min,size_max,size_incr,size_wiggle);
part_type_scale(particle0,xscale,yscale);

The first function in this subchapter is the most used. You’ll almost never make a
particle without needing it, unless you want the particles to be a plain old pixel flying
around the screen. This pretty much sets the particle to one of a selection of shapes
pre-built into Game Maker. These shapes usually work for any type of particle effect

you want to create, however, going more advanced will mean having to create your
own particle shape and using the part_type_sprite function, but we’ll get into that.
The shapes are determined through a list of constants. You simply put one of these
constants into argument2 of part_type_shape:

pt_shape_circle
pt_shape_cloud
pt_shape_disk
pt_shape_explosion
pt_shape_flare
pt_shape_line
pt_shape_pixel
pt_shape_ring
pt_shape_smoke
pt_shape_spark
pt_shape_sphere

No use me explaining what each shape is like. Even if you don’t understand it by the
constant name, it just takes a game-test to see what it looks like (remember what I
said about trial and error?).

The sprite function takes a bit of graphic-design knowledge, however is really
powerful for making your particle effects look much nicer, assuming the pre-made
shapes aren’t good enough for your purpose. The second argument asks for a sprite-
ID/name. You then determine, from the other arguments, whether to animate the
sprite with its sub images, whether to stretch that animation over the lifetime of the
particle (so it only plays once, finishing at the particles death), and whether to start
the animation (or the freeze frame) from a random subimage. Remember, if you want
some nice alpha-mapping for the sprite you use here, it’s good to use the
sprite_set_alpha_from_sprite function. This is very useful for
part_type_sprite, however I’m not going to teach you how the function works.

The next function deals with the angle (like image_angle) of the particle. There are
lots of nice little options here, let’s go through each of them.

ang_min – The minimum angle (in degrees) for the particle
ang_max – The maximum angle (in degrees) for the particle (so obviously it ranges,
randomly)
ang_incr – You can make the angle increase by a certain amount every step (and
use negative values)
ang_wiggle – “Wiggling” a value simply makes it increase the amount you specify,
then move backwards. Kind of like a pendulum motion.
ang_relative – A good function, allowing you to have the angle point relatively to
the direction/path of the particle (it will also be relative to the arguments above, guess
that’s a matter of trial/error)

The next function is also important, and as you can see from the arguments works
similarly to the orientation function, however this deals with particle size, not angle.
You specify the minimum/maximum size values (initial values), 1 being full-size, and
then you choose the increment of the size per step, and of course, size “wiggle”. No
size-relative argument here, unlike the orientation, but you would assume that makes
sense.

The final function is a bit like the size, however this is with both xscale and yscale,
not just both. This is used as a factor to the normal size, and is rarely needed.
However, as you can easily see, it takes 2 arguments to determine both xscale and
yscale.

Particles Life/Death Functions
The next group of functions deal with how long the particles live, and child-particles
they make.

part_type_life(particle0,life_min,life_max);
part_type_step(particle0,step_number,step_type);
part_type_death(particle0,death_number,death_type);

The first function is a rather important function, assuming the default life values aren’t
enough for you. This function gives a minimum and maximum life-value for the
particles. Each particle, when born, will be given a random life value, ranging from
the life_min argument and the life_max value. Of course, just like humans,
particles can die from accidents too (like colliding with filters that change them or
destroy them).

The second function, part_type_step, allows particles to make children in each
step of its life. Pretty much, you can choose how many children to make in each step
with the step_number argument (or like with the part_emitter_stream function,
use negative values to give a chance of children being created in each step), and you
can choose what particle-type that child is, with the step_type argument. This is
good for say trail effects on rockets, etc.

The final function (part_type_death), allows particles to give a certain number of
children when it dies. Good for say smaller particles (like a water-splash). This works
the same as part_type_step arguments-wise, except the negative-values randomly
decide whether to give children at all when dying.

Speed and Motion Functions
The final group of functions deal with the motion of the particles. Including direction,
gravity, and speed.

part_type_speed(ind,speed_min,speed_max,speed_incr,speed_wiggle);
part_type_direction(ind,dir_min,dir_max,dir_incr,dir_wiggle);
part_type_gravity(ind,grav_amount,grav_dir);

The first two functions work very similarly to part_type_size. You can simply
choose a minimum/maximum speed (or direction), an increment-per-step for speed
or direction, and a wiggle amount for speed/direction.

The final function we’re going to deal with is part_type_gravity. This changes the
particles direction with force according to the grav_amount (the force of the gravity),
and grav_dir (the direction, in degrees, the force pulls towards).

Other Functions
The final functions for particle_type functions deal with clearing, destroying, and
some conditional functions.

part_type_clear(particle0);
part_type_destroy(particle0);
part_type_exists(particle0);

The first function clears all the particles settings to its default. The second destroys
the particle altogether, good for saving memory. The final returns true or false
according to whether the indicated particle type exists.

Adding Optional Filters
Besides emitters, there are a few filters that are great to use for different effects,
particle-collisions, and to simply restrict particles from certain areas. These optional
filters are pretty easy to use, so they don’t need such a large chapter for them.

Attractor Filters
Attractor filters are forces, slightly like magnets, that can either pull particles towards
them, or push them away. These are good for particle collisions, like bouncing or
something alike. The manual strictly states to use few of these, as they slow down
processing of particles. Creating an attractor is very similar to creating an emitter:

attractor = part_attractor_create(system);

With this newly created attractor, you can now use these two functions to customize
your attractor:

part_attractor_force(system,attractor,force,dist,kind,additive);
part_attractor_position(system,attractor,x,y);

The first function sets the type of force the attractor has on particles. Like the emitter
(and all other filters), the first argument asks for the system the attractor is located in,
and the second argument then asks for the attractor ID itself. Then, we go into the
force argument. The force is a real; the larger the value, the faster the particles
accelerate towards the attractor. You can of course use negative values to make
particles fly away from the attractor. We then go into the fourth argument, which
determines the maximum distance that particles need to be to the attractor before
they start being attracted towards the attractor (or detracted). Then we have the kind
of force the attractor has. A list of constants are available for this argument:

ps_force_constant
ps_force_linear
ps_force_quadratic

This is the way that the attractor attracts particles. Constant force attracts/detracts
particles at the same rate from its maximal distance to its minimal distance. Linear
force makes the force value smaller as it goes further away from the minimal
distance (minimal distance being the exact position of the attractor). This means that
when a particle first enters the maximal distance, it will be attracted a lot less than
say the middle of the distance or at the attractors’ position. Note: The force-value
you give in this function will be the force applied to particles when they are at the
minimal distance. Finally, we have the quadratic force. This force is rather
mathematical to describe, but basically, the force does not grow at a steady rate like
linear; instead the increment that the force grows by also increases. Here’s a
diagram of the three forces:

The final argument focuses on how the particle takes that force. This is whether it is
additive or not. If the force is additive, the particle’s direction and speed is affected
by the force. This means if it is travelling away-ish from the attractor, and gets caught
into the force, it will slow down, then speed up the other way, as the direction slowly
changes. However, if additive is set to false, the particles position is all that’s
affected. This means he will not take any fight to get away from the force, but instead
snap to the correct direction/force-speed that the attractor asks for.

The second function, part_attractor_position is rather simple. The x and y
arguments determine the position of the attractor. This is also the “minimal distance”
for the force.

Quite simply, you know have a nice working attractor. You can also use these very
standard functions for filters, to destroy attractors, take conditions on them, etc.

part_attractor_clear(system,attractor);
part_attractor_destroy(system,attractor);
part_attractor_destroy_all(system);
part_attractor_exists(system,attractor);

The first function clears all the attractors’ settings to its default. The second destroys
the indexed attractor. The third destroys all attractors in the indicated system, and the
final returns true or false according to whether the indicated attractor exists.

Changer Filters
Changer filters allow you to change one type of particle into another one while it’s
alive. These can be good for various effects, for instance filtering bigger particles into
smaller particles when falling through floors, etc.

changer = part_changer_create(system);

This creates a changer into the system. We now look at the functions that will input
settings into this changer.

part_changer_kind(system,changer,kind);
part_changer_region(system,changer,xmin,xmax,ymin,ymax,shape);
part_changer_types(system,ind,parttype1,parttype2);

The first function allows you to choose how much of the particle is changed. This is
determined by one of three constants:

ps_change_motion
ps_change_shape
ps_change_all

The first constant, _motion, will change only the motion-related settings from one
particle to another. This means the particle will stay the same appearance, but its
speed, direction, gravity, etc will be changed to the other particle’s parameters. The
second, _shape, is the opposite. All motion parameters are kept the same, but the
look of the particle (shape, colour, size, etc) will be changed to the other particle-
types parameters. The final one switches all parameters over to the other particle.

The next function focused, quite frankly, on the region of the changer. This works just
like the emitter, except there are no distribution constants (for obvious reasons). The
shape, just like the emitter, determines from the ps_shape_ constants.

The final function asks you to choose what particle-types to change (when they
collide with the changers region), and then what particle-type to change it to. This is
decided from parttype1 and parttype2. This function is obviously rather important.

The last functions we need to deal with are the functions you see in all other filters…

part_changer_clear(system,changer);
part_changer_destroy(system,changer);
part_changer_destroy_all(system);
part_changer_exists(system,changer);

First clears all the settings from the changer, the next destroys the changer, the third
destroys all changers from the system, and the final returns whether the specified
changer exists or not.

Deflector Filters
Deflector filters are very useful, especially for particle colliding. They, quite basically,
deflect any particles coming into the region. The way the particles deflect on the
deflectors’ kind and friction and of course the particles motion towards the
region. Deflectors are nice and fast, unlike attractors, so you can place lots of them
without too much CPU being used.

deflector = part_deflector_create(system);

This, as always, creates the deflector into the specified system. After this, we need to
input settings into the deflector.

part_deflector_friction(system,deflector,amount);
part_deflector_kind(system,deflector,kind);
part_deflector_region(system,deflector,xmin,xmax,ymin,ymax);

The first function allows you to choose a friction amount for the deflector. This
requires a bit of trial & error to get it working, but it’s rather straight forward. The
second function asks you for the kind of deflector. This is answered with one of two
constants.

ps_deflect_horizontal
ps_deflect_vertical

The first deflects particles horizontally (used for horizontal walls mostly), and the
second deflects particles vertically. I’m not 100% sure why there’s not a
ps_deflect_both, but I would assume there’s a legit reason for it, I’ve just not
thought about it much. Anyway, the final function, again, is the region for the
deflector. The shape is always rectangle now, unfortunate, but it’s the rules. So in
this case there is no shape argument.

part_deflector_clear(system,deflector);
part_deflector_destroy(system,deflector);
part_deflector_destroy_all(system,deflector);
part_deflector_exists(system,deflector);

The first function will clear all the settings from the deflector (to its default settings),
the second will destroy the deflector, the third will destroy all deflectors from the
system, and the final function returns whether the specified deflector in the specified
system exists or not.

Destroyer Filters
The final filter we’ll look at is a simple one. Destroyers destroy and particles that
come into its region.

destroyer = part_destroyer_create(system);

This creates a new destroyer into the system. The simple thing about destroyers is
that the only settings we need to give, is the region.

part_destroyer_region(system,destroyer,xmin,xmax,ymin,ymax,shape);

And I’m sure by now you know how this works. Again, use the emitters’ constants for
the shape.

part_destroyer_clear(system,destroyer);
part_destroyer_destroy(system,destroyer);
part_destroyer_destroy_all(system);
part_destroyer_exists(system,destroyer);

Again, I’m sure you know what these do. No use explaining; Besides, I guess you
need a bit of a challenge to remember them. Helps you learn.

Final Revision
For the past 15 pages, assuming you haven’t fallen asleep at your desk, has focused
on helping you design your own particles. We’ve gone through systems, filters, and
particles themselves. You need to remember that learning a new part of any part of
the manual for GML can take a bit of practice. Practice will build you a logical
structure of how particles work, and then it’s just a matter of trial and error.

This tutorial was written as a means for you to read from top to bottom. For quick
reference for functions/arguments, it’s best that you read from the GML Manual (F1
during Game Maker’s runtime) instead of revising this whole tutorial. However, if you
feel you haven’t got the hang of things, feel free to read it over anyway.

Particles are wonderful things, but they also have their limits and you need to learn
what those limits are, when those limits can be secretly exceeded, and when it’s
good to leave particles out completely. Never-the-less, you can be rest-assured that
you’ve spent a good 5 hours on this damn thing.

Enjoy
Rhys Andrews
GameCave Productions
http://www.gamecave.org

http://www.gamecave.org/

	 Introductory
	 Getting started with Particle Systems
	 Creating an Emitter
	 Designing your First Particles
	Alpha Functions
	Blending and Colour Functions
	Particle-Shaping Functions
	Particles Life/Death Functions
	Speed and Motion Functions
	Other Functions
	Attractor Filters
	Changer Filters
	Deflector Filters
	Destroyer Filters
	 Final Revision

