
GAMECAVE EFFECTS ENGINE 3.X
Documentation/MANUAL

Last Updated: 4th March 2008 - Version 3.1

TABLE OF CONTENTS (CLICK TO view chapter)
Introductory ... 2
Effects Information .. 3

Explosion... 3
Fire .. 5
Star.. 6
Star 2... 7
Particle collisions... 8
Laser ... 9
Ripples .. 10
Lens Flare ... 11
Earthquake.. 12
Classic Gore.. 13
Overhead Snow .. 15
Overhead Rain .. 16
Clouds ... 17
Rain 1.. 18
Rain 2.. 19
Rain 3.. 20
Motion Blur .. 21
Snow ... 22
Static Clouds ... 23

GCE License... 25
Credits and Acknowledgements.. 26
Contact Details.. 27

Introductory
Many elements in game-design make up the overall quality and performance in video
games and other software designed to entertain and/or amuse the player. Arguably,
one of the most important game-design elements lies in the game’s graphic
/appearance quality. As many games are being released both commercially and
freely over the web, graphic quality plays an important part in making your game
stand out from the crowd. Of course, this can be an extremely daunting task, even
with professional graphic-design skills. Luckily, there’s a less complex method of
improving your game’s visual quality.

The GameCave Effects Engine has been
running since Early 2005, and has since been
downloaded over 15,000 times, helping
programmers encase their projects with a rich
polish of visual effects with little programming
knowledge, or without the best graphic-design
skills. The engine provides over 20 mini-
engines, all devoted to providing a great visual
effect. Some are based on realism, others with
a more cartoonist approach. As the Effects
Engine is completely editable, all effects can be
manipulated and re-designed to fit any type of
game; performance, quality, and style wise.

Though use of the effects engine requires some credit for their work (see License), it
is completely free to use, and all coding is completely commented, allowing you to
easily understand the engines you wish to use. And, as of version 3.0, the original
particle-designer PartArt 2.0 is available, integrated into the Effects Engine. PartArt
allows you to use a graphical-user-interface (GUI) to design your own particles. The
program generates the particle-coding as you work on it, so there is no coding
knowledge needed to let your imagination journey across the potential of particle
effects in GameMaker.

Also included with the GameCave Effects Engine are various tutorials for functions
and systems used in GML that help your game’s visual appearance. Such tutorials
include Particle Effects, Surfaces, and Alpha Mapping.

Effects Information
There are many effects included with the GameCave Effects Engine package. Each
effect is heavily commented, and implementation-friendly – so that it’s relatively easy
to install into your own game. Of course, every game is different and so problems
can always arise in installing these effects. If this is the case, you should read this
chapter to further understand how the effect works, in order to know what may be
causing conflict between your game and the effect you wish to use. Of course, if this
doesn’t work, use the contact details to contact us and we will help you in any way
possible.

All the objects and resources explained in each effect are available in the
“GCE_(effectname)” group of the resource folder(s).

Explosion
The explosion effect is the longest
lasting visual effect in the GC Effects
Engine – it has been persistent in
the Effects Engine since v1.0.
However, since v3.0, the explosions
have been revamped and optimized.
Explosions are extensive processes,
and if you over-use them, it can slow
down your game.

To control the explosion effect in the GCE Browser, press any number from 1-8 to
select one of the 8 explosions, and then press SPACE to see the explosion. To see
another explosion, just press another number.

These controls are coded with the objExplosion_control object. The index variable
in the object determines which explosion to bring up for exploding. If the value is 0,
no explosion is ready. Otherwise, the value is equal to which explosion number (1-8).
The step event simply checks for the key-presses and switches the index value (as
well as switches the visibility of explosion barrels – this does not affect whether the
actual effect is visible or not). It also returns the index to 0 if space is pressed.

The other objects in the explosion group are responsible for 1 explosion effect each.
The number at the end of the object indexes show which explosion number they’re
responsible for. In each create event for these explosions are the defining of the
particle effects for the explosion.

Key functions in the create event include
part_system_depth – change the second argument to choose the depth of the
explosion effect.

part_emitter_region – Change the third, fourth, fifth, and sixth argument to the
xmin, xmax, ymin, ymax (in order) of where the explosions should be burst. So, for
instance, if you want the explosion effect to burst at the X and Y position of the object
defining the particles, you would change the arguments to (in order) x,x,y,y.

If you wish to edit any other functions in the create event, consult the GM Manual or
the GCE Particles Tutorial (included with this package) for more information.

The space event in each object first checks whether the index of the control object is
equal to the explosion number the object is responsible for, and if it is, the visual

effect is put into action, and the explosion barrel is then made invisible. The key
functions in this event include the part_emitter_burst functions. These burst a
number of particles for the effect. Each repetition of the function is for each type of
particle (as various explosion effects have various types of particles – such as smoke
and fire).

In the case of explosion 7 and 8, there is also the setting of an alarm when the space
bar is pressed. This is for the beams of light that shoot out of the explosions – looking
in the alarm0 event, a ‘times’ variable is decreased when the alarm goes off, and
then the alarm is reset. The light-beam is then burst each time the alarm goes off.

Fire
The fire effect is similar both
structurally and visually to the
explosion effect. It is built with
particle effects and is also controlled
by an index variable in
objFire_control. The index variable
is equal to 0 if no fire effect is being
burst (pressing space will do this),
else it is equal to the fire effect to
burst. The step event of

objFire_control sets the index variable according to number keys being pressed.
Then, the objFire_(number) objects are responsible for the fire effects (according to
the number on the end of their object index – i.e objFire_1 is responsible for the first
fire effect).

Key functions in the create event include
part_emitter_region – Change the third, fourth, fifth, and sixth argument to the
xmin, xmax, ymin, ymax (in order) of where the fire should be present. So, for
instance, if you want the fire effect to be at the X and Y position of the object defining
the particles, you would change the arguments to (in order) x,x,y,y. Note: Seeing as
the function is only in the create event, the region arguments are only set once. If
your arguments include “x” and “y”, acknowledge it does not update the x and y
position unless you place the function in the step event.

If you wish to edit any other functions in the create event, consult the GM Manual or
the GCE Particles Tutorial (included with this package) for more information.

In the step event of the objFire_(number) objects, the object checks whether
objFire_control’s index variable is set to the fire effect this object is responsible for.
If so, it bursts a batch of fire particles. The part_type_orientation function is
continually set to provide a random angle-increment for the particles.

Star
The first star effect, though very subtle
and static, can be a simple and nice
addition to any night-sky in a platformer.
The stars throb very slightly to depict
twinkling. The stars are made with
particles that last 1,000,000 steps (so
that they don’t go away).

Stars are relatively easy to implement
without problems as only one object is
used to design, display, and remove the stars. That object is objStars. The create
event both declares the particles, and bursts them. The room-end event then
destroys the particles from the game.

Star 2
The second star effect is a little more vibrant. It shows throbbing white stars on a
black background – This star effect shows more of a classic style.

This star effect has an almost exact
structure as the first star effect. The
stars are made with particles that last
1,000,000 steps (so that they don’t go
away).

Stars are relatively easy to implement
without problems as only one object is
used to design, display, and remove

the stars. That object is objStar2. The create event both declares the particles, and
bursts them. The room-end event then destroys the particles from the game.

Particle collisions
Particle Collisions are considered
impossible (at least with GameMaker’s
current structure) – and in a large respect,
this is true. However, with GM’s built-in
deflector, destroyer, and changer functions,
and the use of a “global” particle system, it’s
rather easy to simulate collisions with
particles. This effect shows how simple
particles can collide in 3 different ways (with
3 different coloured boxes).

There are 4 objects that make up the particle-collision effect. One object controls the
particles, systems, and emitters (objParticle_collisions), and the other 3 are the 3
types of blocks, which control their own “particle-collision mask”
(objPC_wall_deflector, objPC_wall_destroyer, and objPC_wall_destroyer).

objParticle_collisions – In the create event, we create a particle system, and within
that system we create 3 emitters: one for the left side (left-click), one for the middle
(middle-click), and one for the right side (right-click). When implementing into your
game, this is irrelevant as the controller object is mainly for displaying how the
collisions work. We then have 2 particles. One is the normal particle type, shot out
when pressing one of the 3 mouse buttons. The other is the particle-type that is
replaced with the other particles, when they collide with objPC_wall_changer (the
blue block). Finally, we have 3 with statements. This executes the user-events of the
3 block-types, telling them to create their particle-collision masks (more on that event
later).

The room-end and destroy events are used simply to destroy the system (including
all particle-collision masks and emitters) when the effect is finished. We then just
have the three “global mouse button” events. Each one bursts the main particle type
with one of the 3 emitters, also changing the particles direction function
(part_type_direction) to fit with the new mouse position.

The other 3 objects, objPC_wall_changer, objPC_wall_deflector, and
objPC_wall_destroyer, all have similar structures. In their create event, they set
their image_blend variable to a particular colour (blue, red, or green) – this is just part
of the example. The other event is a user-event (0). This event, as said previously, is
executed via objParticle_collisions create event, with a with statement. This is to
ensure that the particle-collision masks aren’t created before the particle system is,
else an error would return not being able to find the system to create the collision
masks.

In these user-events, a deflector, changer, or destroyer is created (according to the
object). Then, a region that covers the block’s width/height is applied to that
deflector/changer/destroyer (creating the collision-region), and then more settings are
applied, like friction/force for deflectors, and particle-types to change to for changers.
For more information on those functions, consult the GM Manual or the GCE
Particles Tutorial included with the package.

Laser
The laser effect, or “laser-sight effect”, is nice for top-down-shooters. It uses one
simple group of functions to draw a fast, accurate, and visually-attractive laser-
pointer. The laser has a maximum range of 800 pixels, but can be shortened if it
collides with a wall.

There are 3 objects to exemplify the
laser-effect. objLaser_ball (the ball
that you control and point the laser
with), objLaser_messenger (an
object that looks for the position that
the laser must end), and
objLaser_wall (a simple wall for the
laser to collide with). All the coding,
however, is within the objLaser_ball
object. Firstly, the ball is put in the

middle of the room (see create event). Then, the arrow-key events can move the ball
around. Finally, the draw event – this draws the ball and calculates where to draw the
laser (then, of course draws it).

The with statement creates a new messenger object, which uses the
move_contact_solid object to find any solid object (objLaser_wall, for example)
within 800 pixels away from objLaser_ball, in the direction of the mouse. It then
sends it’s result to the laser_x and laser_y variables in objLaser_ball. The
messenger then destroys itself, and the ball is left to draw the red/black line (in
subtractive blend modes, to make the line fade out) from it’s x/y position, to the x/y
position in variables laser_x and laser_y, left by the messenger.

This is all that’s required to use the laser-line. Change
“point_direction(x,y,mouse_x,mouse_y)” to the direction which you want the
laser to point at.

Ripples
Ripples use surfaces and primitive
textures to stretch and morph the
screen in certain areas, to provide
various effects. There are 2 types. T
first type bulges (or “sucks in”) part o
the screen with a given intensity
second type makes a “drop” effect,
which gets larger and fades out.

he
f

. The

urfaces and texture-primitives can be

 the ripples engine, there are 3 objects. objRipple_control, which controls the

e

face

S
a very sensitive feature of GameMaker. It can be buggy, really slow, or simply not
working by the slightest of mistakes. Different video card chipsets, if too old, can
cause weird problems with surfaces, and so you should use this effect with care.

In
main surface and which ripple object to use – then, the two ripple-type objects,
objRipple_1 and objRipple_2. In objRipple_control’s create event, there is th
surface_create function. It is recommended that, if you have a view, you set the
second and third arguments to the width and height of the view. The size of a sur
really affects the memory usage of your game. The global mouse buttons switch
between which ripple-type object is created – while limiting one instance of that
object in the room at once. The comments in those events cover the events.

Lens Flare
The lens flare is a very simple effect
that shows a first-person-shooter style
lens-flare. All it uses is a group of
blended sprites.

There are 2 objects that make up the
lens flare. They’re both responsible for
two sprites of the lens-flare, but work
similar other than that. The 2 objects
are objLens_1 and objLens_2. In
these two lines:

x = room_width/2;
their create events, it’s important you replace

u wish to set the lens-flares to (not where they point towards,

ext, with a bit of GML knowledge, you can edit some of the variables in the create

ou then have the draw event. This draws each lens-flare. Be sure to replace all
,

y = room_height/2;
With the x/y positions yo
but where they start from – for instance, a sun). If you want them to be where you
place them, just remove the two lines.

N
event to make different looks of the lens-flare (for instance, adding more flares or
changing their alpha values).

Y
instances of “mouse_x” with the X position you wish to point the lens-flare towards
and all instances of “mouse_y” with the Y position.

Earthquake
The earthquake effect shakes the view’s X and Y positions at certain intensity,
keeping in mind the original x and y position so that it can safely return to that
position after the earthquake is finished. This effect is great for explosion shakes, and
really adds to the depth of your game.

The whole earthquake effect is controlled by one object, objEarthquake_control. In
the create event, you have a few variables to determine how the earthquake will
work. The comments after each variable will explain what the variable does.

Nothing should be changed in the step event, so we can switch straight to the
up/down key events. They simply change the shake variable, increasing/decreasing
the intensity of the earthquake. The space event switches the doit variable between
1 and 0 (switching the earthquake on/off).

Classic Gore
“Classic Gore” has been with the
Effects Engine since the very early
versions. It has provided nice gore
effects for many games. Since
GCE 3.X, the gore has been
updated and improved slightly.
There are 11 objects in the classic-
gore engine, all of which will need
some explanation. There are 4
gore-effects, with 2 types and 2 sub-types for each type. The first type is for top-do
games – the blood sprays without gravity, and slides before stopping. The second
type is for platformers – the blood sprays, and falls to the ground. The two sub-type
determine whether the blood flies relative to the bullets direction, or whether it s
out randomly. The objects consist of:

wn

s
hoots

objClassicGore_controller – Controls the little ball you can control/shoot with in the
example.
objDummy1 – Emits the first type (with sub-type A) of gore.
objDummy1b – Emits the first type (with sub-type B) of gore.
objDummy2 – Emits the second type (with sub-type A) of gore.
objDummy2b – Emits the second type (with sub-type B) of gore.
objClassicGore_bullet – A bullet created by pressing the left mouse button. It
creates different types of gore (and sets it’s direction if appropriate) according to
collisions detected for each dummy object.
objClassicGore1_stain – A “stain” (trail of blood) that is left behind by the pieces of
gore.
objClassicGore1 – A piece of meat/gore for the first type (with sub-type A) of gore.
objClassicGore1b – A piece of meat/gore for the first type (with sub-type B) of gore.
objClassicGore2 – A piece of meat/gore for the second type (with sub-type A) of
gore.
objClassicGore2b – A piece of meat/gore for the second type (with sub-type B) of
gore.

As objClassicGore_controller is documented enough in its code, and does not play
an important part in implementing into your own games, it’s not documented in this
chapter. This also applies to each dummy object, as they do not have any code to
execute. You simply need to acknowledge that objClassicGore_bullet creates
various pieces of gore, according to which dummy object it finds in its path.

objClassicGore_bullet, however, requires some explanation. The create event
simply sets the image_angle to face where it’s going, and sets a speed. The draw
event draws a line between its’ current X and Y position, and it’s X and Y position
from the previous step (in which case, it’s a line 15 pixels long, as the bullets speed
is 15 pixels a step).

We then have 4 if statements, each being responsible for a collision line between the
bullets current X and Y position, and it’s X and Y position from the previous step (the
same as the line that’s being drawn) – each if statement being for 1 of the 4 dummy
objects. According to that dummy object, it creates the according gore object (in a
repeat(3) statement – thus creating 3 gore objects). The bullet then destroys itself. In
the case of colliding with either objDummy1b or objDummy2b, a with statement is
used with the newly created gore piece, setting its direction to the other direction
(other being the bullet) with a random factor

Next we have objClassicGore1_stain. The create event sets some parameters for
the motion and look of the stain. This includes the angle, a random subimage, 0.2
alpha, and an alarm to set the fade variable to true. The fade variable, if set to true,
will tell the stain to start fading out its alpha (concluding in the instance’s destruction).
The step event fades out the alpha (if fade is true), and destroys if the alpha is 0 or
less. Finally, the outside room event destroys the stain too.

All the gore objects are also well commented inside their events – and do not need
any further documentation. They simply move according to some random parameters
set in their create event, create blood-stains in the alarm 1 event (which continually
resets itself) if it’s going fast enough, and fades out after fade is set to true. Any
collision events with objGrass is for gravity-affected gore-pieces (platformer blood –
type 2), which stops the gore from moving further.

Overhead Snow
The overhead-snow effect depicts realistic snow
for top-down shooters. It uses basic particles,
and 4 emitters (1 for each side of the screen) to
burst the snow. It works rather simply, and is
controlled all in one object, objOverheadsnow.

The create event first creates a particle system,
and 4 emitters – one for each side of the view.
Make sure your room has its view enabled. If
this is a problem, use the GM Manual (or the
GCE Particles Tutorial) to learn the
part_emitter_region function, to edit the
function so that it considers room edges instead

of view edges. After declaring each emitter, and applying the regions (specifying
where to burst the snow), the snow particle is created and defined.

The step event then redefines the direction (to random parameters) for the snow 4
times (one for each side), to provide a bit more randomization in the snow. It then
bursts 1 particle of snow for each side/emitter (4 particles in total). We then check for
key-presses, and move the view accordingly. Finally, the emitter regions are re-
applied, to keep synchronized with the view’s x/y position.

Finally, the room event destroys the snow system to free some memory.

Overhead Rain
Though the overhead rain would seem
similar to the snow effect, it is in fact quite
different. The overhead rain effect has 3
objects that make up the final result.
objOverheadrain, which moves the view
and creates the rain drops, objDrop, a
single drop of rain moving towards the
centre of the screen, and objDrop_splat,
the little splosh animation when the drop
hits the ground. The rain effect doesn’t use
any particles, just primitive drawing and
instance creation.

The step event of objOverheadrain first checks for keyboard-arrow presses, and
moves the view accordingly (part of the example). Then, it creates a rain-drop
(objDrop) on 4 sides of the view (with random positions – for instance, a rain-drop
being created at the top could be created anywhere from the top-left corner of the
view to the top-right). This requires you have view enabled in your room. If, for any
reason, you can’t have views enabled (and view 0), Replace all “view_xview[0]” and
“view_yview[0]” lines in the step event with ‘0’ (without quotes).

objDrop sets a lot of parameters in its create event to determine it’s look, and it’s
destination in the room. The distance variable is used to determine a random
distance (from it’s start position – in pixels) to where it splashes/hits the ground.
Image_xscale is set in the create event, as it decreases as the drop falls (to give the
illusion of the drop falling further away from the screen). Destx and desty is used to
determine the direction for the drop. Of course, the drop won’t die when it reaches
these coordinates, but will fall short according to the distance variable.

The destroy event simply creates objDrop_splat at its position, so we can see the
drop splash on the ground.

The step event is used to reset the image_xscale, so that the drop can get smaller as
it reaches its death-spot. It also destroys the drop if it has reached its destination.

objDrop_splat works very simply. The create event picks a random alpha value (for
a bit of variation between splashes), and the step event fades out the alpha value
(eventually destroying the object).

Clouds
The clouds effect is a classic favourite, being
implemented in the very early versions of the
effects engine. It simply show’s a
platformer/side-scroller style cloud-scrolling
effect, using particles. The clouds effect can
sometimes be slow, but there are some simple
methods of sacrificing a bit of appearance value
for a performance boost, that will be explained
below.

One object controls the cloud effect –
objClouds. The create event defines all
particles and their systems/emitters, and then

starts continually streaming the clouds. There are 2 particle systems, cloud_infront
and cloud_behind. This is to give the clouds some depth, by creating smaller clouds
that move slower, behind the larger clouds. It will give a parallax effect. Then, two
cloud-types are created – cloud0 and cloud1. cloud0 is for the cloud_infront
system, and cloud1 is for the cloud_behind system. To improve performance, use
the part_type_size functions, by making the second and third arguments smaller –
such as:

part_type_size(cloud0,1,2,0,0.02)
into
part_type_size(cloud0,0.7,1.2,0,0.02)

Finally, the emitters are created (1 for each system), and each emitter streams the
respected particle. To make it seem like the clouds have “always been there” when
the room starts (instead of having the clouds slide on the screen, with a blank screen
at the start), the repeat statement has been used to update the particle’s
position/look 400 times/steps (to ‘fast forward’ the process).

Rain 1
In the Effects Engine, there are 3 types of rain.
This, first effect is a simple, more cartoonish
approach to a rain and lightning effect. The rain
uses particles, where as the (realtime-
generated) lightning uses basic drawing
primitives to generated a unique shape every
time lightning strikes.

There are 3 objects that make this effect.
objRain1, which controls all the rain particles
and randomly creates lightning,
objThunder_fork_basic, which makes one
instance/strike of lightning, and

objThunder_sheet, which makes the screen flash when lightning strikes.

The create event of objRain1 defines all the rain particle parameters, and starts
streaming them (5 per step). You can change the intensity of the rain by changing the
‘5’ to a higher or lower number (in the part_emitter_stream function). If your room is
very large, and uses a view, it may be wise to change the part_emitter_region
arguments to ‘view_xview[0]’ (instead of 0), and
‘view_xview[0]+view_wview[0]+200’ (instead of room_width+200). Finally, the rain-
drops are automatically moved 50 steps before they become visible, so that the rain
is already streaming normally when the room starts.

The destroy event (and room end event) simply destroys the particle-system for the
rain, to free memory.

The step event randomizes the chance of lightning being created (a chance of 1 in
every 80 steps is given), and creates the other two objects (objThunder_fork_basic,
and objThunder_sheet) accordingly. If you are using a view, you may want to
change “random(room_width)” with “view_xview[0]+random(view_wview[0])”. If
you want to use the complex lightning-style (see RAIN 3), simply replace
‘objThunder_fork_basic’ with ‘objThunder_fork_complex’.

objThunder_sheet draws a white rectangle all over the screen, which fades in and
out quickly. The create event makes the alpha set to 0 (invisible), and sets an alarm
that will destroy the sheet when it’s finished flashing. The step event increases alpha
until It has reached full – alpha (fully visible). It then switches the fadein variable,
which makes the alpha start fading out again (back to 0). Finally, the draw event
draws the sprite (1x1 sprite), stretching it across the whole room.

objThunder_fork_basic isn’t as basic as it seems. Though, anything you may want
to change in lightning can be done through variable values that are placed in the
create event. They are explained enough by their comments. The draw event draws
the lightning according to the variables declared in the create event.

Rain 2
The second rain effect has a slightly similar look to
the first, except this depicts a more realistic look.
This effect does not use particles, so there is 1
object instance for every drop. This makes the
game more compatible, and allows rain drops to
have collisions (further than what the particle
collisions engine is capable of) as well as execute
normal object events, but may show more of a
performance hit later on.

This time, there are just 2 objects that make up this
effect. objRain2_control creates all rain drops
appropriately, and objRain2_drop is an individual drop that is created by
objRain2_control.

In objRain2_control’s step event, we simply create (3) drops at a random spot
across the room. If you are using a view, it is recommended you change the first
argument of instance_create to “view_xview[0]-100+random(view_wview[0]+100)”.

objRain_drop is also pretty basic. The create event specifies some random speeds
and directions of the rain drop, to give some variety and depth. The draw event then
draws a line from the rain-drops current position, to the rain-drops previous position.
This means, the faster the rain-drop is going, the shorter the line.

Rain 3
The final rain effect is the most preferred rain
effect. It uses both particle effects, and texture
primitives to create a complex alternative to
lightning, which uses advanced mathematical
calculation to generate one, realistic and unique
look of lightning every time.

This rain effect has 3 objects to make up the
effect. Firstly, we have objRain3, which defines
and creates the rain particles, and then we have
objThunder_sheet again, along with the other
lightning-effect-type,
objThunder_fork_complex.

The create event of objRain3 defines all the rain particle parameters, and starts
streaming them (5 per step). You can change the intensity of the rain by changing the
‘5’ to a higher or lower number (in the part_emitter_stream function). If your room is
very large, and uses a view, it may be wise to change the part_emitter_region
arguments to ‘view_xview[0]’ (instead of 0), and
‘view_xview[0]+view_wview[0]+200’ (instead of room_width+200). Finally, the rain-
drops are automatically moved 50 steps before they become visible, so that the rain
is already streaming normally when the room starts.

The destroy event (and room end event) simply destroys the particle-system for the
rain, to free memory.

The step event randomizes the chance of lightning being created (a chance of 1 in
every 80 steps is given), and creates the other two objects
(objThunder_fork_complex, and objThunder_sheet) accordingly. If you are using
a view, you may want to change “random(room_width)” with
“view_xview[0]+random(view_wview[0])”. If you want to use the basic lightning-
style (see RAIN 1), simply replace ‘objThunder_fork_complex’ with
‘objThunder_fork_basic’.

objThunder_sheet is explained in the “Rain 1” chapter.

Finally, we have objThunder_fork_complex. The name speaks for itself, the coding
is rather complicated. However, to manipulate the lightning, most of it can be done
with a few variable changes, in the create event. These variables are explained
through their comments. The draw event simply draws the randomly generated
lightning.

Motion Blur
Motion blur is a great effect that can be
implemented in many ways, in many games.
Examples would include high-speed racing, or
being hit by bullets in a shooter game. Though
this motion-blur effect can be considered rather
demanding in terms of performance, most
average computers these days should be able
to run the effect without any problems.
However, a video card with at least 64MB of
memory is required.

To use the effect, you will usually need rather
advanced skills with GML, to keep the visual
effect running properly. There is just 1 object that makes the motion blur effect. It is
called objMotionBlur

The create event creates 2 surfaces, with the width and height of the region’s size.
Then, some parameters are set, such as blur_amount (the “alpha” of the screen –
the less the alpha, the more you can see the blur. 0 will freeze the screen, 1 will
provide no blur). We then use set_automatic_draw to 0, meaning we need to
manually choose when to redraw/refresh the screen.

The end-step event first stops the view from moving off the screen, and applies
speed/friction on its movement. Then, the 2 surfaces take a “snapshot” of the screen,
applies some unique blend modes to it, and draws the surface with the specified blur
amount. This should not be tampered with. The 4 keyboard events move the view-
speed appropriately, and the room end event sets automatic draw back to 1, and
frees (removes from the memory) the 2 surfaces, as we have finished using the
motion-blur.

Snow
The final effect in the effects engine is this
‘veteran’ snow effect – surviving untouched in
the Effects Engine since the early versions. The
snow effect uses pure particle effects, and is all
controlled by one object: objSnow.

The create event of objSnow defines all
particles, their systems, and the emitter. It then
starts streaming 2 particles every step, fast-
forwarding the particles movement 100 steps so
that the snow is already half-way down the
screen when the game starts. If you are using a
view, it is recommended that you change “-500”

in the part_emitter_region function to “view_xview[0]-500”, and “room_width+500”
to “view_xview[0]+view_wview[0]+500”.

The destroy and room-end events simply destroy sthe particle system.

Static Clouds
This is an alternative to the classic cloud
effect. This effect has lots of small clouds t
do not move, as opposed to one large smog
of cloud drifting across the sky. The whole
effect is controlled by one object:
objStaticCloud.

hat

In the create event, you can change the
number of clouds and the intensity of each
cloud with the respective variables.

Tutorial Information
Included with the GCE 3.X package is a series of tutorials to help you design your
own visual effects in Game Maker. Such tutorials include creating particle effects,
using alpha masks, blend modes, and more.

To view these tutorials, simply open the appropriate PDF file included with the GCE
Package. You must have Adobe Acrobat Reader, available for free from
www.adobe.com.

http://www.adobe.com/

GCE License
GameCave Effects Engine Version 3.X – Written by Rhys Andrews

All resources, including sprites, graphics, scripts, objects, and anything included in
the GameCave Effects Engine Package is free of use, with the exception of
acknowledgement and credit permission from the respected owner(s). Please contact
us via email or Gm-Community PM, available in the Contact Details chapter.
Credits must include the text “Effects by GameCave Effects Engine” or similar,
inside your game.

Credits and Acknowledgements
Effects Created By:

- Rhys Andrews
- Pim Schreurs
- Jake Wilson
- Joel Arnott.

Sprite/Graphic Work:

- Scott Llewelyn
- Pim Schreurs
- Rhys Andrews
- Joseph Chessey.

Special Thanks To:

- Joel Arnott
- Users @ GameMaker Community
- Users @ 64digits.com

Contact Details
Website: www.gamecave.org
Email: administration@gamecave.org
GM-Community Topic: http://forums.gamemaker.nl/index.php?showtopic=138220
GM-Community PM: RhysAndrews

Please suggest any comments, bug reports, or questions via any of these contact
methods. If you wish to state anything publicly, Please visit the Gm-Community
Topic.

http://www.gamecave.org/
mailto:administration@gamecave.org
http://forums.gamemaker.nl/index.php?showtopic=138220

	 Introductory
	Effects Information
	Explosion
	Fire
	 Star
	Star 2
	 Particle collisions
	Laser
	 Ripples
	Lens Flare
	Earthquake
	Classic Gore
	Overhead Snow
	 Overhead Rain
	 Clouds
	Rain 1
	 Rain 2
	Rain 3
	Motion Blur
	Snow
	 Static Clouds
	GCE License
	Credits and Acknowledgements
	Contact Details

