
Tim's Pseudo-Random Number Generator

Functions:

prng_init()
Requires no arguments, creates the necessary variables and data structures for the rest of the

extension.

prng_create()
Creates a new random number system. Requires two arguments, name and seed (in that order),

however, seed is optional. If you do not specify the seed, it will be generated *randomly.

prng()
Generates a random number between 0 and 1 and returns it. Requires only one argument, name,

which specifies which preset random number system (created with prng_create()) to use.

*Seed is generated by multiplying the time in milliseconds since the computer was turned on by the
current day of the week (1-7)

General Information:
Tim's Pseudo-Random Number Generator (creative name, I know) is something I (Timothy Sassone)
developed in my free time. I decided to make it when I realized the limitations of the built in random
number generator. Specifically that even when seeded manually it is not perfectly predictable and that
you can only have one system. By the former I mean that because GM uses it's own random number

generator, sometimes even when seeded manually it will seem to skip a number when it uses it
internally. The latter requires a bit more explanation. Say you were making a random dungeon

generator. You could generate all the flooring, then the walls, then the items, etc. But you would have
to do one, reseed the generator, do the next, and repeat. With multiple systems you can do all tasks at

the same time.

How it Works (Basic):
TPRNG is simple enough to use. Firstly, at the beg ginning of the game, call prng_init(). It doesn't

need any arguments. Next, you have to create a system. A system is a number generator tied to a seed.
You can have as many as you want, but I will start with using just one. Call prng_create(name, seed) to
create a system. Name can be a number but I advise using strings. If you do not specify a seed, or try

to set it to 0, a seed will be generated for you. After that, call prng(name) using the same name you
used to create the system. It will return a random number.

If you use the same seed you will get the same results, so if you're using it to generate a map, you can

let the player pick a seed and then if they like the map they can put the same seed in later and get the
same map.

How it Works (Advanced):
There are loads of algorithms for random number generators, but being fifteen, I opted for a relatively

simple one:
x = (x + n1) mod n2

Where x is the seed, n1 is a preset number (in my case, 16807) and n2 is another preset number (again,
in this engine, 2147483647). I will not go in-depth on how or why this works, as there is loads of free

information available on the internet. The number generated will be somewhere between 0 and n2.

As for the inner workings, I wouldn't advise messing with them, as it's not guarantied to work, but if
you feel it is simple enough feel free to mod to your hearts content, here is a summery of the

variables/data structures used.

Table 1: Variables and Data Structures

_randmap A map data structure that holds all the systems and
their latest seeds. The the names is the key and

the last seed the value. Also of note, the seeds are
stored in the form of the number between 0 and n2,

not 0-1.
_n1 The first number in the above equation. This is

set in the init script so if you're going to change it,
do so after calling prng_init.

_n2 The second number in the above equation. Again,
this is set in the init script, so any changes made

before the script is called will have no effect.

Because the names and seeds are kept in a map, you can use any of the ds_map functions on them.

